

17. Punktkinematik

17.1 Grundbegriffe

Beschreibung der Bewegung eines Punktes:

Punktkinematik

Angabe der Position durch r

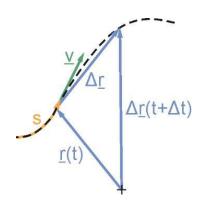
z. B. in kartesischen Koord.:
$$\underline{r} = x\underline{e}_x + y\underline{e}_y + z\underline{e}_z$$
 in Zylinderkoord.: $\underline{r} = r\underline{e}_r + z\underline{e}_z$

Der Geschwindigkeitsvektor (velocitas)

$$\underline{v} = \lim_{\Delta t \to 0} \frac{\Delta \underline{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\underline{r}(t + \Delta t) - \underline{r}(t)}{\Delta t} = \frac{d\underline{r}}{dt}$$

$$\underline{v} = \frac{d\underline{r}}{dt} = \underline{\dot{r}}$$

 \underline{v} ist stets tangential an die Bahnkurve



17.1 Grundbegriffe

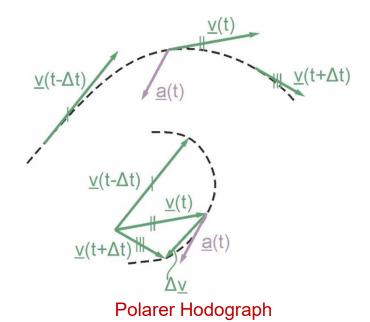
Der Beschleunigungsvektor (acceleratio)

$$\underline{a} = \lim_{\Delta t \to 0} \frac{\Delta \underline{v}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\underline{v}(t + \Delta t) - \underline{v}(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta \underline{v}}{\Delta t} = \frac{d\underline{v}}{dt}$$

$$\underline{a} = \frac{d\underline{v}}{dt} = \underline{\dot{v}}$$

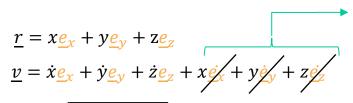
$$\underline{a} = \frac{d^2\underline{r}}{dt^2} = \underline{\ddot{r}}$$

<u>a</u> zeigt ins Innere der Bahnkurve (ist im Allgemeinen nicht tangential an die Bahnkurve)



17.2. Beschreibung in unterschiedlichen Koordinatensystemen

17.2.1 Kartesisches KS



Keine zeitliche Änderung der Einheitsvektoren, da das KS fest im Bezugssystem verankert ist

$$\left|\underline{v}\right| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$$

$$\underline{a} = \underline{\dot{v}} = \ddot{x}\underline{\mathbf{e}}_{x} + \ddot{y}\underline{\mathbf{e}}_{y} + \ddot{z}\underline{\mathbf{e}}_{z}$$

$$\left|\underline{a}\right| = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2}$$

Die positiven Zählrichtungen von \ddot{x} , \ddot{y} und \ddot{z} stimmen mit den Orientierungen von \underline{e}_x , \underline{e}_v und \underline{e}_z überein

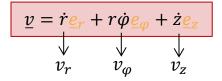
17.2.2 Zylinderkoordinaten

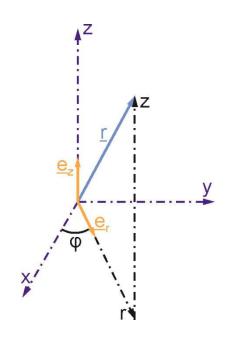
$$\underline{r} = r\underline{e}_r + z\underline{e}_z$$

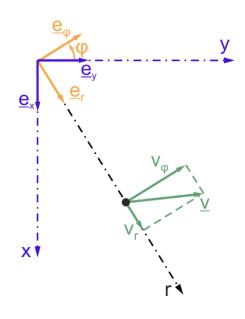
$$\underline{v} = \dot{\underline{r}} = \dot{r}\underline{e}_r + r\dot{\underline{e}}_r + \dot{z}\underline{e}_z + z\dot{\underline{e}}_z$$

$$\underline{e}_r = \cos\varphi\underline{e}_x + \sin\varphi\underline{e}_y$$

$$\frac{\dot{\underline{e}}_r = -\sin\varphi \dot{\underline{e}}_x + \cos\varphi \dot{\underline{e}}_y =}{= (-\sin\varphi \underline{e}_x + \cos\varphi \underline{e}_y) \dot{\varphi}} = \frac{(-\sin\varphi \underline{e}_x + \cos\varphi \underline{e}_y) \dot{\varphi}}{\underline{e}_{\varphi}}$$







$$\underline{a} = \underline{\dot{v}} = \ddot{r}\underline{e}_r + \dot{r}\underline{\dot{e}}_r + \dot{r}\dot{\varphi}\underline{e}_{\varphi} + r\ddot{\varphi}\underline{e}_{\varphi} + r\ddot{\varphi}\underline{\dot{e}}_{\varphi} + \ddot{z}\underline{\dot{e}}_z + \dot{z}\underline{\dot{e}}_z =$$

$$= \ddot{r}\underline{e}_r + \dot{r}\dot{\varphi}\underline{e}_{\varphi} + \dot{r}\dot{\varphi}\underline{e}_{\varphi} + r\ddot{\varphi}\underline{e}_{\varphi} - r\dot{\varphi}^2\underline{e}_r + \ddot{z}\underline{e}_z$$

Beispiel: Bewegung eines Punktes auf einer Kreisbahn

Geg.:
$$r(t) = R = const.$$
, $\dot{r} = 0$, $\ddot{r} = 0$

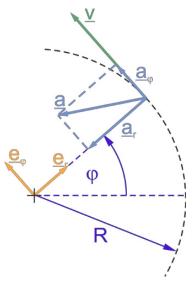
Ges.: <u>v</u>, <u>a</u>

$$\underline{v} = R\dot{\varphi}\underline{e}_{\varphi} \qquad |\underline{v}| = R\dot{\varphi}$$

$$\underline{a} = -R\dot{\varphi}^{2}\underline{e}_{r} + R\ddot{\varphi}\underline{e}_{\varphi}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$a_{r} \qquad a_{\varphi}$$



Wenn die Bahngeschwindigkeit $|\underline{v}|$ konstant ist, wird $\ddot{\varphi}=0$, somit tritt keine Beschleunigungskomponente a_{φ} auf. Es tritt aber immer noch eine Radialbeschleunigung auf, da der Geschwindigkeitsvektor ständig seine Richtung ändert.

Definition: $\dot{\varphi}$... zeitliche Änderung des Winkels = WINKELGESCHWINDIGKEIT $\omega = \dot{\varphi}$

z. B.:
$$\omega$$
 der Erde = $\frac{2\pi}{86400}$ = $\frac{72.7 \cdot 10^{-6} \text{ s}^{-1}}{\text{s}}$ [ω] = $\frac{rad}{s}$ = s^{-1}

Formel 1-Motor:
$$n = 14000 \ U/min$$

$$\rightarrow \omega = 1466 \, s^{-1}$$

Beispiel: Zentralbewegung

Beschleunigung in Richtung er

$$\rightarrow a_{\varphi} = 0$$

$$r\ddot{\varphi} + 2\dot{r}\dot{\varphi} = 0$$

$$r\dot{\omega} + 2\dot{r}\omega = 0$$

$$\rightarrow \frac{\dot{\omega}}{\omega} = -\frac{2\dot{r}}{r} / \int dt$$

$$\ln \omega = -2\ln r + \ln c$$

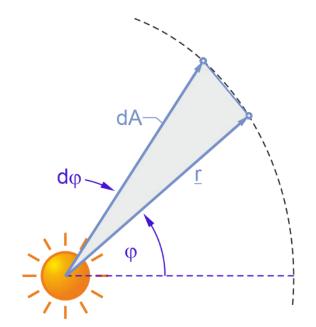
$$\rightarrow r^2 \omega = c$$

$$a_r = \ddot{r} - r\omega^2$$

außerdem gilt: $a_r = -k\frac{1}{r^2}$

$$-k/_{r^2} = \ddot{r} - r\frac{c^2}{r^4}$$

$$-k/_{r^2} = \ddot{r} - \frac{c^2}{r^3}$$



$$dA = \frac{1}{2}r^2d\varphi$$

$$\frac{dA}{dt} = \frac{1}{2}r^2\omega$$

$$\frac{dA}{dt} = \frac{1}{2}r^2 \frac{d\varphi}{dt} = \frac{1}{2}r^2 \omega = \frac{1}{2}c$$

die Flächengeschwindigkeit ist konstant...2. Keplersches Gesetz

$$\ddot{r} - \frac{c^2}{r^3} + \frac{k}{r^2} = 0$$

Lösung:
$$r(\varphi) = \frac{c^2}{k(1 + \varepsilon \cos \varphi)}$$

$$\varepsilon$$
 < 1 Ellipse

$$\varepsilon = 1$$
 Parabel

$$\varepsilon > 1$$
 Hyperbel

arepsilon abhängig von Anfangsabstand und Anfangsgeschwindigkeit (r_0, v_0)

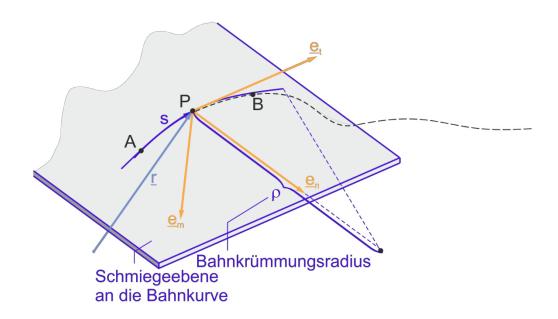
17.2.3 Natürliche Koordinaten

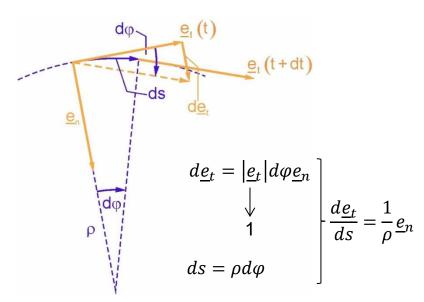
$$\underline{e}_m = \underline{e}_t \times \underline{e}_n$$
 \underline{e}_t , \underline{e}_n und \underline{e}_m bilden das begleitende Dreibein

$$\underline{v} = \frac{d\underline{r}}{dt} = \frac{d\underline{r}}{ds} \cdot \frac{ds}{dt} = v\underline{e}_t$$

$$\underline{e}_t = \frac{d\underline{r}}{ds} \qquad \qquad v = \frac{ds}{dt}$$

$$\underline{a} = \frac{d\underline{v}}{dt} = \frac{d}{dt}(v\underline{e_t}) = \frac{dv}{dt}\underline{e_t} + v\frac{d\underline{e_t}}{dt} = \frac{dv}{dt}\underline{e_t} + v\frac{d\underline{e_t}}{ds} \quad \frac{ds}{dt}$$





$$\underline{a} = \dot{v}\underline{e}_t + \frac{v^2}{\rho}\underline{e}_n \qquad \underline{v} = v\underline{e}_t$$

$$a_t = \frac{dv}{dt}$$
 ... Tangential beschleunigung

$$a_n = \frac{v^2}{\rho}$$
 ...Normalbeschleunigung

$$|\underline{a}|^2 = a_t^2 + a_n^2$$

Außerdem gilt:

$$a_{t} = \frac{dv}{dt} = \frac{dv}{ds} \left(\frac{ds}{dt} \right)$$

$$v$$

$$a_{t} = v \frac{dv}{ds}$$

 $vdv = a_t ds$ Zeitfreie Gleichung

Analog für Winkelgeschwindigkeit ω :

$$\ddot{\varphi} = \frac{d\dot{\varphi}}{dt} = \frac{d\dot{\varphi}}{d\varphi} \underbrace{\begin{pmatrix} d\varphi \\ dt \end{pmatrix}}_{\dot{\varphi}}$$

$$\ddot{\varphi}d\varphi = \dot{\varphi}d\dot{\varphi}$$

$$\dot{\omega}d\varphi = \omega d\omega$$

Beispiel: Bewegung eines Teilchens

Geg.:
$$\underline{r}(t) = t^2 \underline{e}_x + \frac{1}{3} t^3 \underline{e}_y$$

Achtung: Vorfaktoren nicht dimensionsfrei

Ges.: Radius ρ der Bahnkurve bei t = 2s.

$$a_n = \frac{v^2}{\rho}$$

$$\underline{r} = \begin{bmatrix} t^2 \\ \frac{1}{3}t^3 \end{bmatrix} mm \qquad \underline{v} = \begin{bmatrix} 2t \\ t^2 \end{bmatrix} mm/s \qquad \underline{a} = \begin{bmatrix} 2 \\ 2t \end{bmatrix} mm/s^2$$

$$\underline{v} = \begin{bmatrix} 2t \\ t^2 \end{bmatrix} mm/s$$

$$a = \begin{bmatrix} 2 \\ 2t \end{bmatrix} mm/s$$

<u>r(t)</u>

$$|v| = t\sqrt{4 + t^2}$$

$$|\underline{v}| = t\sqrt{4 + t^2} \qquad |\underline{a}| = 2\sqrt{1 + t^2}$$

$$|\underline{a}|^2 = a_t^2 + a_n^2$$

$$a_t = \frac{dv}{dt} = \sqrt{4 + t^2} + t \frac{2t}{2\sqrt{4 + t^2}} = \frac{4 + 2t^2}{\sqrt{4 + t^2}}$$

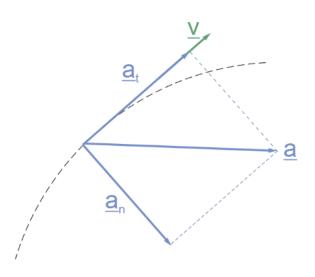
$$f \ddot{u} r t = 2s: a_t = 3\sqrt{2} mm/s^2$$

$$|\underline{a}| = 2\sqrt{5} \ m \, m/s^2$$

$$a_n = \sqrt{20 - 18} = \sqrt{2} \ m \, m/s^2$$

$$v = 4\sqrt{2} \quad m \, m/s$$

$$\rho = \frac{v^2}{a_n} = \frac{32}{\sqrt{2}} = 16\sqrt{2} = 22.6 \ mm$$



Alternative:

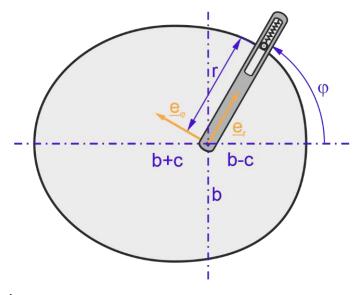
$$a_t = \underline{a} \cdot \frac{\underline{v}}{|\underline{v}|} \qquad \underline{a} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \qquad \underline{v} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \qquad |\underline{v}| = 4\sqrt{2} \qquad \qquad a_t = \frac{1}{4\sqrt{2}} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 3\sqrt{2} \ mm/s^2$$

Beispiel: Kurvenscheibe

Geg.: $r(\varphi) = b - c\cos\varphi$ für b>c

Umlaufgeschwindigkeit der Kulisse ω = const.

Ges.: Beschleunigung der Rolle



$$\underline{r} = r\underline{e}_r$$

$$\underline{v} = \dot{r}\underline{e}_r + r\omega\underline{e}_{\varphi}$$

$$\underline{a} = (\ddot{r} - r\omega^2)\underline{e_r} + (r\dot{\omega} + 2\dot{r}\omega)\underline{e_\varphi}$$

$$\omega = \dot{\varphi}$$

$$\dot{r} = c\sin\varphi \cdot \dot{\varphi} = c\omega\sin\varphi$$

$$\omega = \text{konst.} \rightarrow \dot{\omega} = 0$$

$$\ddot{r} = c\cos\varphi \cdot \dot{\varphi}^2 + c\sin\varphi \cdot \ddot{\varphi} = c\omega^2 \cos\varphi$$

$$\underline{a} = [c\omega^2 \cos\varphi - (b - c\cos\varphi)\omega^2]\underline{e_r} + [2c\omega^2 \cdot \sin\varphi]\underline{e_\varphi} = [2c\omega^2 \cos\varphi - b\omega^2]\underline{e_r} + [2c\omega^2 \cdot \sin\varphi]\underline{e_\varphi}$$

$$|\underline{a}|^2 = 4c^2\omega^4\cos^2\varphi + b^2\omega^4 - 4cb\omega^4\cos\varphi + 4c^2\omega^4\sin^2\varphi$$

$$|\underline{a}| = \omega^2 \sqrt{4c^2 - 4cb\cos\varphi + b^2}$$

Beispiel: zeitfreie Gleichung

Geg.: $v_A = 180 \, km/h = 50 \, m/s$, $v_B = 90 \, km/h = 25 \, m/s$,

konstante Bremsverzögerung, $\rho_B = 20 m$, |AB| = 100 m

Ges.: Gesamtbeschleunigung in B

$$vdv = a_t ds a_t = const.$$

$$\int_{50}^{25} v dv = \int_{0}^{100} a_t ds$$

$$\begin{array}{c|c}
25 & 100 \\
\hline
v^2 & \\
\hline
2 & \\
50 & 0
\end{array}$$

$$a_t = \frac{25^2 - 50^2}{2 \cdot 100} = -9.375 \ m/s^2$$

$$a_n = \frac{{v_B}^2}{{\rho _B}} = \frac{625}{20} = 31.25 \ m/s^2$$

$$a_{gesB} = \sqrt{{a_t}^2 + {a_n}^2} = 32.63 \ m/s^2$$

