Supplementary Material

If one inserts Eqs. (5-6) into Eq. (7), the Gibbs energy G_{self} becomes a function of the parameters Ωc_T and y. Its equilibrium value $G_{self,eq}(y)$ is then given by using the value $\Omega c_{T,eq}$ from Eq. (12) for Ωc_T as

$$G_{\text{self,eq}}(y) = (1-y)G_A + yG_B + (Zy - \Omega c_{T,\text{eq}})E + R_g T \begin{cases} (1-Zy) \left[\frac{y - \Omega c_{T,\text{eq}}}{1-Zy} \ln\left(\frac{y - \Omega c_{T,\text{eq}}}{1-Zy}\right) + \left(1 - \frac{y - \Omega c_{T,\text{eq}}}{1-Zy}\right) \ln\left(1 - \frac{y - \Omega c_{T,\text{eq}}}{1-Zy}\right) \right] \\ + Zy \left[\frac{\Omega c_{T,\text{eq}}}{Zy} \ln\left(\frac{\Omega c_{T,\text{eq}}}{Zy}\right) + \left(1 - \frac{\Omega c_{T,\text{eq}}}{Zy}\right) \ln\left(1 - \frac{\Omega c_{T,\text{eq}}}{Zy}\right) \right] \end{cases}$$
(S1)

As $\Omega c_{T,eq}$ is a function of y, see Eq. (12), its derivative with respect to y reads as

$$\frac{\mathrm{d}\Omega c_{T,\mathrm{eq}}}{\mathrm{d}y} = \Omega c_{T,\mathrm{eq}}' = \frac{(1+Z)}{2} \pm \frac{2(1+Z)^2 y(\tilde{E}-1)^2 + 2[(1+Z)-4Zy\tilde{E}](\tilde{E}-1)}{4(\tilde{E}-1)\sqrt{(1+Z)^2 y^2(\tilde{E}-1)^2 + 2[(1+Z)y-2Zy^2\tilde{E}](\tilde{E}-1)+1}}.$$
 (S2)

The derivative $dG_{self,eq}/dy$ follow from Eqs. (S1) and (S2) after some analysis as

$$\frac{dG_{\text{self,eq}}}{dy} = -G_A + G_B + \left(Z - \Omega c'_{T,\text{eq}}\right)E + R_g T \left\{ \begin{aligned} & \left[\frac{y - \Omega c_{T,\text{eq}}}{1 - Zy} \ln\left(\frac{y - \Omega c_{T,\text{eq}}}{1 - Zy}\right) - \left(1 - \frac{y - \Omega c_{T,\text{eq}}}{1 - Zy}\right) \ln\left(1 - \frac{y - \Omega c_{T,\text{eq}}}{1 - Zy}\right) \right] + \left\{ \frac{\Omega c_{T,\text{eq}}}{Zy} \ln\left(\frac{\Omega c_{T,\text{eq}}}{Zy}\right) + \left(1 - \frac{\Omega c_{T,\text{eq}}}{Zy}\right) \ln\left(1 - \frac{\Omega c_{T,\text{eq}}}{Zy}\right) \right] + \left\{ \frac{\Omega c'_{T,\text{eq}}(1 - Zy) + Z\Omega c_{T,\text{eq}} - 1}{1 - Zy} - 1 \right] + \frac{\Omega c'_{T,\text{eq}}y - \Omega c_{T,\text{eq}}}{y} \ln\left(\frac{\Omega c_{T,\text{eq}}}{Zy - \Omega c_{T,\text{eq}}}\right) \right\}. \quad (S3)$$

The second derivative $d^2 G_{\text{self,eq}}/dy^2$ represents a very lengthy expression, and it is recommended to calculate it from Eqs. (S2) and (S3) by using a mathematical software.

The chemical potential $\mu_{B,CAL}(y)$ can be calculated by means of the CALPHAD approach, see, e.g., [15] for a bcc Fe-Al system dilute in Al (A \rightarrow Fe and B \rightarrow Al). The chemical potentials $\mu_{Al,reg}(y)$ (see Eq. (15)₂) and $\mu_{Al,self}(y)$ (see Eq. (13)₂) are fitted to the actual $\mu_{Al,CAL}(y)$ by adapting the value of *E*, see the values of *E* in Fig. S1 and Table S1. From Fig. S2 and Table S1 (see Supplementary Material [14] for Figs. S1, S2 and Table S1), it is evident that the agreement of $\mu_{Al,self}(y)$ with $\mu_{Al,CAL}(y)$ is much better than that of $\mu_{Al,reg}(y)$ with $\mu_{Al,CAL}(y)$, which means that the self-consistent solution model renders reality much better than the regular model.

Fig. S1. Fitted values of E for the regular model, dashed line, and the self-consistent model, solid line, for different temperatures listed in Table 1 for a bcc Fe-Al system.

Fig. S2. Difference between $\mu_{Al,CAL}(y)$ and $\mu_{Al,reg}(y)$, dashed lines, and between $\mu_{Al,CAL}(y)$ and $\mu_{Al,self}(y)$, solid lines, both denoted as $\Delta \mu$, for different temperatures listed in Table 1 for a bcc Fe-Al system.

<i>T</i> / [°C]	E _{self} / [kJ/mol]	E _{reg} / [kJ/mol]	Least sum of squares	
			self	reg
700	-14.76	-14.91	0.08	92.04
600	-14.18	-14.33	0.04	88.78
500	-13.64	-13.79	0.09	86.73
400	-13.15	-13.30	0.27	85.91
300	-12.71	-12.87	0.68	86.42
200	-12.33	-12.50	1.46	88.42
100	-12.02	-12.20	2.83	92.24
25	-11.85	-12.03	4.42	96.59

Table S1: Fitted values of E in bcc-Fe with Al (0 to 0.02 at%) at different temperatures, Z = 8