
1 
 

Supplementary Material 
 

If one inserts Eqs. (5-6) into Eq. (7), the Gibbs energy selfG  becomes a function of the 
parameters TcΩ  and y . Its equilibrium value ( )self,eqG y  is then given by using the value 

,eqTcΩ  from Eq. (12) for TcΩ as 
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As ,eqTcΩ  is a function of y , see Eq. (12), its derivative with respect to y reads as 
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The derivative self,eqd dG y  follow from Eqs. (S1) and (S2) after some analysis as 
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The second derivative 2 2

self,eqd dG y represents a very lengthy expression, and it is 
recommended to calculate it from Eqs. (S2) and (S3) by using a mathematical software. 
 The chemical potential ( ),CALB yµ  can be calculated by means of the CALPHAD 
approach, see, e.g., [15] for a bcc Fe-Al system dilute in Al ( A Fe→  and B Al→ ). The 
chemical potentials ( ),regAl yµ  (see Eq. (15)2) and ( ),selfAl yµ  (see Eq. (13)2) are fitted to 

the actual ( ),CALAl yµ  by adapting the value of E , see the values of E  in Fig. S1 and Table 
S1. From Fig. S2 and Table S1 (see Supplementary Material [14] for Figs. S1, S2 and Table 
S1), it is evident that the agreement of ( ),selfAl yµ  with ( ),CALAl yµ  is much better than that 

of ( ),regAl yµ  with ( ),CALAl yµ , which means that the self-consistent solution model renders 
reality much better than the regular model. 
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Fig. S1. Fitted values of E for the regular model, dashed line, and the self-consistent model, 
solid line, for different temperatures listed in Table 1 for a bcc Fe-Al system. 
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Fig. S2. Difference between ( ),CALAl yµ and ( ),regAl yµ , dashed lines, and between 

( ),CALAl yµ  and ( ),selfAl yµ , solid lines, both denoted as µ∆ , for different temperatures listed 
in Table 1 for a bcc Fe-Al system. 
 
 
Table S1: Fitted values of E in bcc-Fe with Al (0 to 0.02 at%) at different temperatures, Z = 8 

T / [°C] Eself / [kJ/mol] Ereg / [kJ/mol] 
Least sum of squares 

self reg 
700 -14.76 -14.91 0.08 92.04 
600 -14.18 -14.33 0.04 88.78 
500 -13.64 -13.79 0.09 86.73 
400 -13.15 -13.30 0.27 85.91 
300 -12.71 -12.87 0.68 86.42 
200 -12.33 -12.50 1.46 88.42 
100 -12.02 -12.20 2.83 92.24 
25 -11.85 -12.03 4.42 96.59 

 


